6.1 $V=\left\{\vec{x} \in \mathbb{R}^{2}: \vec{x}=\left[\begin{array}{l}0 \\ t\end{array}\right]\right.$ for some $\left.t \in \mathbb{R}\right\}$.
6.2 $H=\left\{\vec{x} \in \mathbb{R}^{2}: \vec{x}=\left[\begin{array}{l}t \\ 0\end{array}\right]\right.$ for some $\left.t \in \mathbb{R}\right\}$.
6.3 $D=\left\{\vec{x} \in \mathbb{R}^{2}: \vec{x}=t\left[\begin{array}{l}1 \\ 1\end{array}\right]\right.$ for some $\left.t \in \mathbb{R}\right\}$.
6.4 $N=\left\{\vec{x} \in \mathbb{R}^{2}: \vec{x}=t\left[\begin{array}{l}1 \\ 1\end{array}\right]\right.$ for all $\left.t \in \mathbb{R}\right\}$.
$6.5 \mathrm{~V} \cup \mathrm{H}$.
6.6 $V \cap H$.
6.7 Does $V \cup H=\mathbb{R}^{2}$?

Vector Combinations

Linear Combination

A linear combination of the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ is a vector

$$
\vec{w}=\alpha_{1} \vec{v}_{1}+\alpha_{2} \vec{v}_{2}+\cdots+\alpha_{n} \vec{v}_{n}
$$

The scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are called the coefficients of the linear combination.

7 Let $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$, and $\vec{w}=2 \vec{v}_{1}+\vec{v}_{2}$.
7.1 Write \vec{w} as a column vector. When \vec{w} is written as a linear combination of \vec{v}_{1} and \vec{v}_{2}, what are the coefficients of \vec{v}_{1} and \vec{v}_{2} ?
7.2 Is $\left[\begin{array}{l}3 \\ 3\end{array}\right]$ a linear combination of \vec{v}_{1} and \vec{v}_{2} ?
7.3 Is $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ a linear combination of \vec{v}_{1} and \vec{v}_{2} ?
7.4 Is $\left[\begin{array}{l}4 \\ 0\end{array}\right]$ a linear combination of \vec{v}_{1} and \vec{v}_{2} ?
7.5 Can you find a vector in \mathbb{R}^{2} that isn't a linear combination of \vec{v}_{1} and \vec{v}_{2} ?
7.6 Can you find a vector in \mathbb{R}^{2} that isn't a linear combination of \vec{v}_{1} ?

Recall the Magic Carpet Ride task where the hover board could travel in the direction $\vec{h}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and the magic carpet could move in the direction $\vec{m}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
8.1 Rephrase the sentence "Gauss can be reached using just the magic carpet and the hover board" using formal mathematical language.
8.2 Rephrase the sentence "There is nowhere Gauss can hide where he is inaccessible by magic carpet and hover board" using formal mathematical language.
8.3 Rephrase the sentence " \mathbb{R}^{2} is the set of all linear combinations of \vec{h} and \vec{m} " using formal mathematical language.

